Greenhouse gas implications of household energy technology in Kenya.

نویسندگان

  • Rob Bailis
  • Majid Ezzati
  • Daniel M Kammen
چکیده

Linkages between household energy technology, indoor air pollution, and greenhouse gas (GHG) emissions have become increasingly important in understanding the local and global environmental and health effects of domestic energy use. We report on GHG emissions from common Kenyan wood and charcoal cookstoves. Our estimations are based on 29 d of measurements under the conditions of actual use in 19 rural Kenyan households. Carbon monoxide (CO), particulate matter (PM10), combustion phase, and fuel mass were measured continuously or in short intervals in day-long monitoring sessions. Emissions of pollutants other than CO and PM10 were estimated using emissions ratios from published literature. We estimated that the daily carbon emissions from charcoal stoves (5202 +/- 2257 g of C: mean +/- SD) were lower than both traditional open fire (5990 +/- 1843 g of C) and improved ceramic woodstoves (5905 +/- 1553 g of C), but the differences were not statistically significant. However, when each pollutant was weighted using a 20-yr global warming potential, charcoal stoves emitted larger amounts of GHGs than either type of woodstove (9850 +/- 4600 g of C for charcoal as compared to 8310 +/- 2400 and 9649 +/- 2207 for open fire and ceramic woodstoves, respectively; differences not statistically significant). Non-CO2 emissions from charcoal stoves were 5549 +/- 2700 g of C in 20-yr CO2 equivalent units, while emissions were 2860 +/- 680 and 4711 +/- 919 for three-stone fires and improved ceramic stoves, respectively, with statistically significant results between charcoal and wood stoves. Therefore in a sustainable fuel-cycle (i.e., excluding CO2), charcoal stoves have larger emissions than woodstoves. When the emissions from charcoal production, measured in a previous study, were included in the assessment, the disparity between the GHG emissions from charcoal and firewood increased significantly, with non-CO2 GHG emissions factors (g of C/kg of fuel burned) for charcoal production and consumption 6-13 times higher than emissions from woodstoves. Policy implications and options for environment and public health are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density.

Which municipalities and locations within the United States contribute the most to household greenhouse gas emissions, and what is the effect of population density and suburbanization on emissions? Using national household surveys, we developed econometric models of demand for energy, transportation, food, goods, and services that were used to derive average household carbon footprints (HCF) fo...

متن کامل

Comparison of energy consumption and greenhouse gas emission footprint caused by agricultural products in greenhouses and open field in Iran

Decisions can be taken to increase energy efficiency and to mitigate the emissions to the environment by examining the energy audit and greenhouse gas (GHG) emissions footprint of crop production in different ways and in different regions, with comparable principles. In this study, energy consumption and energy indices of tomatoes production in four regions of Iran including East Azerbaijan...

متن کامل

01 Optimum planning and scheduling of a water-energy of a greenhouse in different climate conditions in Iran

This study aims to optimize the energy supply system of a greenhouse considering twelve different climate conditions in Iran. For this purpose, an integrated two-objective linear energy optimization model has been developed to control the inside temperature and provide the required heating, cooling, and electricity by receiving electricity, gas, and water. The mentioned goals are to minimize op...

متن کامل

01 Optimum planning and scheduling of a water-energy of a greenhouse in different climate conditions in Iran

This study aims to optimize the energy supply system of a greenhouse considering twelve different climate conditions in Iran. For this purpose, an integrated two-objective linear energy optimization model has been developed to control the inside temperature and provide the required heating, cooling, and electricity by receiving electricity, gas, and water. The mentioned goals are to minimize op...

متن کامل

Quantifying carbon footprint reduction opportunities for U.S. households and communities.

Carbon management is of increasing interest to individuals, households, and communities. In order to effectively assess and manage their climate impacts, individuals need information on the financial and greenhouse gas benefits of effective mitigation opportunities. We use consumption-based life cycle accounting techniques to quantify the carbon footprints of typical U.S. households in 28 citie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 10  شماره 

صفحات  -

تاریخ انتشار 2003